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In fact, the mathematical model, due to its complexity, 

was solved by a UNIVAC 1180 computer. Some results are 

presented in Fig. 2. 

CONCLUSIONS 

In our experimental apparatus, the overall sensitivity 

is 0.75 cm3i”K at boiling water temperature of 100°C (the 

displacement corresponding to 1 cm3 is 1.8 cm), while the 

intrinsic inaccuracy, shown by small oscillations of the 

liquid level of the azotometer, is in the order of 0.05 cm3. 

Thus the procedure seems perfectly adequate for an accurate 

measurement of the heat transfer coefficient in pool boiling, 

given by : 

even if (TPE - Ta,) is a few degrees. On the contrary the 

intrinsic uncertainty is caused by the irreproducibility of the 

boiling phenomenon itself. 
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NOMENCLATURE 

magnetic flux density; 

heat capacity; 

equivalent diameter [4a/(l + l/y)]; 

electric field ; 
Eckert number [t?/C,(T, - T.)]; 

dimensionless magnetic held, 

Subscripts 

c, centerpoint of duct; 

w, wall. 

Superscripts 

, “pseudo” parameter delined on basis of a velocity 

other than the average velocity; 

-, average value; 
* , dimensionless variable. 

J, 
k, 
M, 
NE, 
Nu, 
p, 
4, 

u*, 
Y*, 

z*, 

current density; 

thermal conductivity; 

Hartmann number [aB,,(u,/MJt] ; 
electric field parameter [E,/cB,]; 
Nusselt number [q,D,/k(T - T,)]: 
pressure; 

heat llux; 

dimensionless velocity, [p,u/a*( - aP/ax)] ; 

Ylz ; 
Z/b. 

1. INTRODUCTION 

Greek 

Y3 
0, 

P> 

P. 

symbols 
aspect ratio of duct (b/a); 
dimensionless temperature, T - TJT, - 7,; 

viscosity; 

density; 

THERE have been many analyses of MHD heat transfer in 
parallel plate geometries [l-5] but studies in finite ducts 

have been relatively scarce. Despite the abundant work on 

the simpler parallel plate problems, there has been sur- 

prisingly little emphasis placed on predictions of the 

Nusselt number. Finite ducts have not received as much 

attention due in part to the complexity of the problem since 

the fluid flow is influenced by the nature of recirculating 

currents which must be accounted for by relating the local 

current density to the magnetic field which is induced in 
the direction of the flow. This is particularly important 

when the duct walls are electrical insulators and it then 

becomes necessary to solve two coupled partial differential 

equations: the momentum equation and the equation 

0, electrical conductivity. describing the distribution of the induced magnetic field. 
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In the more general case where heat transfer is also important, 

three coupled partial differential equations must be solved 

unless the energy equation can be decoupled by virtue of 

constant fluid properties. The problem of fully developed 

heat transfer in this situation has been considered by Eraslan 

and Snyder [6] and also by Singer [7]. Both analyses were 

conducted under the assumption of constant fluid properties 

with Eraslan and Snyder presenting their results in the form 

of isotherms for boundary conditions of constant heat 

flux at the walls. Singer obtained his solution in the form 

of a system of infinite series but of such complexity that he 

did not attempt to calculate numerical results. 

To date there has been no reported attempt to approach 

the electrically insulated duct problem in such a manner 

as to yield direct calculations of limiting Nusselt numbers. 

In addition there has been no consideration of the effects 

of either variable fluid properties or of extertmlly applied 

electric fields on the limiting Nusselt numbers in linite 

MHD ducts. Thus, the problem which is considered here 

is oriented towards predictions of limiting Nusselt numbers 

under conditions of variable fluid properties for MHD 

flow in Finite rectangular ducts. Consideration is also given 

to the effects of external electric fields under conditions 

where the electric field can be assumed to be constant within 

the fluid. 

2. ANALYSES 

2.1 General case 

For the general case of a rectangular MHD duct but 

under the assumption of fully developed conditions in the 

x-direction, the momentum equation reduces to 

0 = - g + ; P(dy + z If -dz - (J x B), = 0. (1) 
( duX) a ( d”X) 

Where it has been assumed that the fluid is Newtonian and 

the flow is laminar and steady. The current density vector, 

J, can be given either by Ohm’s Law 

J = b[E + u X B] 

or by Ampere’s Law 

(2) 

J=VxH. (3) 

In general the y and z-components of the electric field 

vector are not constants and in such cases it is more con- 

venient to express J in terms of equation (3). The momentum 
equation then becomes 

In equations (4) and (5) allowance has been made for 

possible variations in the viscosity and the electrical con- 

ductivity of the fluid. For many problems of practical 

interest the fluid properties are functions of temperature 

thereby necessitating the coupling of the energy equation 

with both equations (4) and (5). 

To derive the energy equation we restrict ourselves to the 

limiting case of fully developed thermal flow under condi- 

tions of a constant wall heat flux per unit axial length of 

duct. Neglecting viscous dissipation and heat conduction 

in the axial direction the energy equation can be written 

for a constant thermal conductivity as 

It can be shown that, for fully developed heat transfer with 

a constant heat flux, aT/ax is a constant in equation (6) 

and can be related to the Nusselt number by taking an 

energy balance over an infinitesimal volume of the duct. 

It should also be noted that under these conditions the 

temperature, and hence the fluid properties, will vary in 

the axial direction. Thus, implicit in the derivation of 

equations (4H6) is the assumption that axial temperature 

gradients are small with respect to those in the y-z plane. 

The applicable boundary conditions at the wall are 

0 (Perfect electrical insulator) 

T = T, 

an 
2 = 0 (Perfect electrical conductor). 
at 

2.2 The electrically insulated duct 
It is worthwhile to consider the situation where all walls 

are perfect electrical insulators since in this case, (H,), = 0. 

Furthermore, in this situation the only currents are 

induced currents and unless magnetic interactions are large, 

joule heating becomes negligible. 

In dimensionless form, the resulting equations are as 

follows 

To complete the mathematical description of the flow it is 

necessary to generate an expression which describes the 
variation of the induced magnetic field, H, in the y-z plane. 

Combining Maxwell’s equations and Ohm’s Law this 

equation simplifies to [ 

Nu(1 + l/y)2 

I 

a28 t a% 

402 u:=p+yZaz*Z. 
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Equations (7)-(9) must be solved simultaneously, subject 
to the specification of the temperature dependency of @ 
and u and choosing the coefficient of u; in equation (9) 
such that 8, = 1. For simpii~~, it is assumed that the fluid 
properties vary according to power law functions; that is, 

n* = t?“, CT* = o*. (10) 

The values of n and o depend upon the nature of the fluid 
in question as well as upon the temperature range which 
exists in the duct. 

2.3 ExternaNy applied efectricfields 
If the walls at z* = + 1 are electrical conductors, then 

energy can be either extracted or inputted to the duct 
depending on the electrical circuit external to the duct. 
For our purposes we assume that recirculating currents are 
negligible with respect to those passing through the con- 
ducting walls and thus, the only component of the electric 
fteld vector is E,, which is constant. In this case joule heating 
cannot be ignored and the pertinent differential equations 
are 

+ @[iv, - q-J u* -I- 1 = 0 (11) 

+ MfPrEc’(u$ - hQ2 u*. (12) 

3. RESULTS 

The pertinent equations for both cases were solved by 
finite difference numerical methods using a Modified Gauss- 
Seidel algorithm. Values of ?I and w were chosen according 
to estimates of how the properties of actual MHD fluids 
would vary with temperature and only Hartmann numbers 
less than 10 were considered. Limiting Nusselt numbers 
were calculated for situations representing an MHD 
accelerator (N, - 15) and for an MHD generator (NE - 0.6) 
with the product of the Eckert and Prandtl numbers held 
constant at 0.1. 

As shown in Fig. 1 the general trend is for the Nusselt 
number to increase with aspect ratio since as the aspect 
ratio increases the temperature profile becomes flatter and 
D, increases. The influence of joule heating is manifested 
not only by the large differences in the results for the 
accelerator as contrasted to the generator but also by the 
fact that the Nusselt numbers are lower for the accelerator 
than for the insulated duct. This latter result is due to the 
tendency of joule heating to lower the Nusselt number, a 
result which has been reported by previous authors [4, S]. 
However, the occurrence of much lower Nusselt numbers 
in the generator case requires a more detailed analysis. 

9 

t Insulated duct 

s- 

NE -0-6 
4 

21 I 1 I I 
I-O 2,o 3-o 4-o 5.0 

Aspect ratio, y 

FIG. 1. Variations of Nusseh numbers with aspect ratio; 
constant properties (M, = 5). 

The explanation lies in the competing influences of the 
convective and joule heating ~ont~butions to the energy 
balance. For MHD generators the I x B force is a retarding 
force and for a given pressure drop, s will decrease as the 
magnitude of the current which is drawn through the 
external circuit increases. Since 2 appears in both the con- 
vective and joule heating terms in equation (12X the net 
effect is that the ~mb~ation of reduced convection and 
increased joule heating produce lower Nusselt numbers. 
However, the J x B force is an accelerating force in the 
MHD accelerator and thus the increased convection more 
than compensates for the increased joule heating and higher 
Nusselt numbers are the result. 

Consistent with the above discussion it was also found 
that the Nusselt number was not strongly dependent on the 
Hartmann number for either the accelerator or the insulated 
duct. However, since increasing Hartmann numbers producz 
larger values of both the J x B force and the joule heating, 
the Nusselt number decreases sharply with increasing 
Hartmann numbers for the MHD generator. A separate 
evaluation of joule heating effects was also accomplished 
by studying the effects of variations in PrEc. As expected, 
increases in joule heating resulted in decreased Nusselt 
numbers for a11 cases considered with the effect being more 
pronounced for generators. 
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Figure 2 shows the results obtained when the electrical 

conductivity of the fluid was allowed to vary according to 

the power law assumption of equation (10). These results 

are for cooled walls and for a fluid with an electrical con- 

ductivity which decreases with decreasing temperature. 

Since the Nusselt number increases with increasing Hartmann 

number in constant property flow for both MHD accelera- 

tors and insulated ducts, it would bc expected that the 

91 

4 I 
31 I 

0 IO PO 

Eleclr~col conductlwty parameter, w 

FIG. 2. The effect of variable electrical conductivity on 

Nusselt number (M, = 5, y = 5, constant visocosity). 

Nusselt number would decrease as the electrical conduc- 

tivity variance increases in these same flows. This is due to 

the fact that for cooled walls the local value of the Hartmann 

number decreases as the walls are approached. Thus the 

overall effect is to have an effective Hartmann number which 

is less than that calculated on the basis of the centerpoint 

conditions. It should be noted however, that as Thomson [9] 

has shown, it is not possible to account for local Hartmann 

number variations in terms of averaged bulk properties. 

The generator results shown in Fig. 2 have the opposite 

dependency on the conductivity variation because, as 

previously shown, it has the opposite dependency on Hart- 
mann number for constant property flows. 

It is also noteworthy that small changes in the conduc- 

tivity parameter produce significant changes in the Nusselt 
number results. Thus even though the conductivity variation 

may be slight in a given situation, the Nusselt number can 

still be in significant error if evaluated on the basis of con- 
stant fluid properties. This is particularly true for the 

generator due to the additive influences of convection and 
joule heating 

Results were also obtained for situations where the 

viscosity of the fluid was also temperature dependent. For 

all cases considered, accounting for viscosity variations 

influenced the Nusselt number results in much the same 

way as they would in ordinary hydrodynamic flow. The 

maximum discrepancy between Nusselt numbers calculated 

on the basis of constant fluid properties and those calcu- 

calculated by taking viscosity variations into account 

was found to be 15 per cent. 

4. CONCLUSIONS 

It has been shown that the magnitude and character of the 

limiting Nusselt numbers in MHD generators are very 

different than those for either MHD accelerators or electric- 

ally insulated ducts. The generator results can be explained 

in terms of the competing influences of convection and 

joule heating on the differential energy balance since these 

contributions are additive for generators whereas they are 

compensatory in accelerators. The Nusselt number calcula- 

tions for variable property MHD flows show significant 

departures from the constant property results. The genera- 

tors are more sensitive to variations in the electrical con- 

ductivity, exhibiting up to 20 per cent changes in the Nusselt 

number even for small property variations. It was further 

concluded that viscosity variations were as important as 

they would be in ordinary hydrodynamic flow but that 

there was no separate dependence on the electromagnetic 

environment. 
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